If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+18t+5
We move all terms to the left:
0-(-16t^2+18t+5)=0
We add all the numbers together, and all the variables
-(-16t^2+18t+5)=0
We get rid of parentheses
16t^2-18t-5=0
a = 16; b = -18; c = -5;
Δ = b2-4ac
Δ = -182-4·16·(-5)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{161}}{2*16}=\frac{18-2\sqrt{161}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{161}}{2*16}=\frac{18+2\sqrt{161}}{32} $
| 49^x=7^x+1 | | 1/4x^+x-2=0 | | 35=6v+4-2v | | 32=5v-7+4v | | 1x–7=10x–37 | | .250=g/22+.146 | | -11z-12z=11 | | n–9=19 | | (2x+20)(3x+10)=180 | | n–9=19n= | | -7+q=-11 | | 1.2-3e=-1.8 | | X+0.21x=22 | | 125-x=65 | | -x+197=71 | | -3(x-2)+21=0 | | -2x+1=-81 | | q+10=51 | | 210x=8820 | | b+46=85 | | 3+4(x-2)=6x-11 | | 3k+25k−3=7 | | 210x=8,820 | | 3x²-8=0 | | (X-3)+41+(y+8)=74 | | -x+14=-8 | | −3/4d-11=1/4d-61/2 | | 14+x/55x=8 | | 12-10x+5x+18=0 | | 48=45x | | 5x–10=25x+ | | 45x=48 |